
RoboBoat 2023: Technical Design Report
SimLE SeaSentinel Team

Igor Rusiecki, Norbert Szulc, Klaudia Głowacka, Cezary Wieczorkowski, Tomasz Ujazdowski, Igor Baranowski,
Franciszek Górski, Piotr Stroiński, Jakub Wilk, Patryk Sobolewski. Maciej Zawadzki, Maciej Cieślak,

Marcin Waryś, Francisco Osuna Chudzio, Wiktoria Piech, Karol Rzepiński, Jan Sontowski, Piotr Wykowski,
Michał Ganczarenko, Andrzej Pilguj, Michał Biczkowski

Gdańsk University of Technology, Poland, Gdańsk

Abstract—This report discusses the strategy of the SimLE
SeaSentinel team for RoboBoat 2023 and the design of our
Autonomous Surface Vehicle (ASV) named ASV Perkoz. It’s
a modular, mostly 3D-printed vessel equipped with a robotic
arm. It was designed as an easily transportable platform capable
of autonomous navigation and performing tasks during the
RoboBoat 2023 competition.

Index Terms—autonomous, robot operating system, be-
havioural trees

ACRONYMS AND ABBREVIATIONS

ASV Autonomous Surface Vehicle
VCU Vehicle Control Unit, a.k.a. Flight Control Unit
FOV Field of View
OCS Operator Control Station
OBP Onboard Processing
GS Ground Segment
DOF Degrees of Freedom
SBC Single Board Computer
ROS Robot Operating System

I. COMPETITION GOALS

A. General Strategy

As a first-year team, we decided to reduce the scope of our
project by attempting only six out of eight tasks during the
RoboBoat 2023 competition. Due to the limited number of
team members in the early phases of the development and
the fact that the competition takes place in March instead
of June, which greatly reduced the time in which we had to
design our Autonomous Surface Vehicle, we decided to limit
the number of iterations in our design spiral to an absolute
minimum. Although such an approach came with a high risk
of failure, it allowed us to meet deadlines and thus participate
in the competition.

In order to set our priorities and formulate requirements for
ASV Perkoz we decided to use the MoSCoW method [1].
We identified requirements related to Tasks 1, 2, 4, and 8 as
“must-have”, requirements related to Tasks 3 and 7 as “should
have”, some basic Task 6 related requirements as “could have”
and finally we identified Task 5 and advanced Task 6 related
requirements as “won’t have”.

Gdańsk University of Technology, Ministry of Education and Science

From the beginning of our work, we have put a lot of
emphasis on modularity. This concept, despite its controversial
use on larger vessels, can be applied with great success on
smaller vessels like the ones built with RoboBoat competitions
in mind. Capabilities resulting from our ASV’s modular design
are crucial for our logistics. We plan to bring our ASV together
with us in our flight luggage, instead of sending it as a parcel.
Such a decision gave us additional three weeks of time for
preparation and testing.

B. Course Strategy

Firstly, the ASV will attempt the mandatory task called
Navigate the Panama Canal. For every task, the ASV’s motion
control will be based on computer vision and the decision-
making process will be supported by a behavioral tree.

After completing the first task, the ASV will detect the pair
of green and red buoys, which will indicate the end of Task 1
and the beginning of Task 2 – Magellan’s Route / Count the
Manatees & Jellyfish. Object avoidance will be based on image
acquisition and processing, and the ASV will be suggested to
move to the nearest ”clear” segment. Furthermore, distances
to objects will be calculated based on the data provided by
three OAK-D stereo cameras. Total Field of View (FOV) will
be 180 degrees. To minimize the risk of the ASV getting lost,
we will save its GPS coordinates before and after every task.
In case of being unable to detect any desired object, ASV will
return to the last saved position.

For Task 3 – Beaching & Inspecting Turtle Nests – we are
training our model to detect nests with different numbers of
dots (1-6) in three colors (green, blue and red). The ASV
will detect the object based on the given color, then recognize
and report the number of “eggs”. To dock, we will use path
planning and object avoidance algorithms.

While preparing our strategy for Task 4 – Northern Passage
Challenge – and after analyzing videos from previous editions
of RoboBoat we have come to a conclusion that the main
deciding factor for the success is not speed but the ability
to fluently and without any disturbance turn around the blue
buoy. This is why we didn’t identify the speed of our vehicle
to be a crucial parameter although our thrusters can generate
up to 44 N of thrust each [7].

The core of our strategy for Task 7 – Ponce de Leon /
Fountain of Youth – is the use of our custom robotic arm
that will reach to the target and then start pumping water
into it. In order to successfully execute Task 7 this way
we needed to ensure that we will be able to maintain a
stable position and minimize the heel when our robotic arm
is working. For this reason we equipped our ASV with a
four-thrusters propulsion system to enhance our capabilities
regarding dynamic positioning and with a bulb keel that will
improve mass displacement and thus provide enough stability.

II. DESIGN STRATEGY

Since the beginning of this project, we have adhered to
the principles of systems engineering. This has enabled us
to divide the project into subsystems and components, which
have been assigned to team members for implementation. Each
top-level system has been defined with a specific role and
function, according to single responsibility principle. We have
chosen to split our work into the following systems:

• Mechanical – responsible for hull design, hydrodynamics,
and task-specific modules.

• Propulsion – motor placement attachment and driving.
• Electrical – all the cabling, batteries, power, and inte-

gration of Vehicle Control Unit (VCU) (a. k. a. Flight
Controller) with sensors and motors.

• Onboard Processing – application domain, high-level
command over VCU, object detection, decision-making,
task-specific algorithms.

• Ground Segment – everything that won’t be on the ASV,
including the Operator Control Station (OCS).

Their structure and components have been reflected within
our Work Breakdown StructureC-A. We will skip some of the
components to emphasize the creative aspects of the system.

A. Hull design

When designing our hull, we needed to find a compromise
between the stability and simplicity of our construction. Sta-
bility was important as it decreased disturbance to the camera
view, which improved our object detection, identification, and
location capabilities [2]. It was also absolutely crucial for our
strategy regarding Task 7 since our robotic arm can generate up
to 12 Nm of torque which needed to be adequately countered.
The latter was imposed on us by the limited time-frame,
which forced us to make our hull as simple to manufacture as
possible.

As a result, we decided to create a modular flat bottom hull
made of XPS sheets. On top of it is a frame to which 3D-
printed hull modules are attached. A PVC mast for cameras
and antennas is located at the stern. At the bow, we located
our robotic arm.

B. Propulsion

We decided to equip ASV Perkoz with a differential thrust
propulsion system with the use of four Blue Robotics T200
Thrusters. Two at the bow and two at the stern. Each pair is
angled in a way that diverts water streams to the sides of the

Fig. 1. Hull concept

hull rather than under it. Such a design allows movement in
four Degrees of Freedom (DOF) by changing the amount of
thrust generated by a given thruster. It also should enhance
our ASV’s capabilities regarding dynamic positioning, which
will be benefitial when executing Task 7.

In order to control them we are extending existing PX4
autopilot firmware [5]. By writing a custom controller, we are
essentially porting a similar feature from ArduRover [6]. We
hope to open-source it and contribute our work to the PX4
ecosystem. Unfortunately as it is still unstable, as a fallback we
consider the aforementioned ArduRover. Because both VCU
firmware alternatives are abstracted through Mavlink protocol,
we can risk the novel propulsion approach.

C. Robotic arm as a water delivery system

Fig. 2. Actuator Design

As part of our strategy for Task 7, we designed a robotic
arm inspired by an open-source project [3]. The arm has four
DOF, and it has a working range of up to 1.3 meters. All joints
are 3D printed and driven by DC motors. Links are made of
PVC pipes. Along the robotic arm runs a hose through which
water, pumped by two diaphragm pumps, will be delivered to
the target.

For driving, we will use inverse kinematics [4]. This method
will be coupled with the camera feedback. As a fallback we

2

will hard-code the desired arm position and lock it while
executing the task, disregarding camera feedback.

D. System Bus

We decided to interconnect subsystems on our vehicle using
a CAN bus [10]. This technology is an industry standard that
provides very robust communication. To ensure scalability of
our system and to streamline development of new subsystems,
we decided to utilize Cyphal communication protocol [11].
This protocol was built with autonomous vehicles in mind, it
is simple and does not require much processing power from
the hardware. Furthermore, it is decentralized, which means
that all nodes are equal and failure of any one of them does
not interrupt communication between the other ones. Cyphal
also allows us to focus more on developing service-oriented
interfaces between components by abstracting away lower
level subjects needed for inter system communication. System
bus connects to the Electrical power supply, Visual Feedback
System, VCU, Single Board Computer (SBC) and robotic arm.
We are hoping to integrate all newly developed systems into
this environment.

E. Electrical power supply

Our ASV uses Li-Po batteries as a source of power and
has a specially designed safety system that includes a BMS
for safe charging/discharging and a custom power controller
for power distribution, monitoring and emergency shutdown.
Monitoring data is exposed over CAN bus. Remote emergency
shutdown uses its own separate radio module.

F. Position and attitude determination

GPS RTK (Real-Time Kinematic) is a high-precision posi-
tioning technology that uses differential correction to improve
the accuracy of GPS measurements by several orders of
magnitude, allowing for centimeter-level accuracy in real-time.
As we had readily available GPS RTK modules, we will rely
on them for precise positioning. Additional data will be fed
passively to ASV from OCS during it’s autonomous operation,
as it has GPS RTK base station.

To increase accuracy of heading determination we will
attempt to use second GPS module to supplement VCUs
compass readings. This second module will be places along
ASVs axis, creating a heading vector.

G. Computer Vision

We are using a vision heavy approach, as we resigned from
integrating LiDAR. We were unable to obtain an affordable
device that would perform well in direct sunlight and on a
pitching ASV. This pushed us to use multiple cameras totaling
180 degress of FOV. The object detection architecture we
selected is YOLOv7 [12], the latest edition of the YOLO
family [13]. It has been developed specifically for real-time
object detection tasks and boasts state-of-the-art performance.
In order to reduce computation resources, we opted to utilize
a pre-trained tiny version of YOLOv7 with fewer trainable
parameters. This is required due to constrained resources on

our chosen SBC: Jetson Nano. It has been trained using pub-
licly available data [14], primarily sourced from the Roboflow
service, which is compatible with the YOLOv7 architecture.
We hope to syntesize more training data through simulation
in the near future.

We are utilizing stereo imaging for distance detection, due
to the availability of multiple OAK-D cameras [15] at a cost-
effective price compared to LiDAR. These cameras feature an
AI coprocessor, as well as color and stereo vision capabilities.
The color data is fed to the YOLO model running on the SBC,
while the stereo data is processed on the cameras themselves.
This allows the SBC to be unburdened of additional workload
and have more resources available for autonomy. Both object
detection and distance data are transmitted as Robot Operating
System (ROS) topics.

H. Autonomous Navigation Software Architecture

The ASV’s decision-making system is built with Be-
havioural Trees [9] and the ROS platform [16]. ROS provides
libraries for multiple sensors and actuators, and allows for
data acquisition and digital filtering. The system is divided
into a higher-level control layer for strategy development
and a lower-level layer for communicating with peripherals
and VCU [18]. This node-based design facilitates testing and
enhances code clarity, while making the system flexible and
expandable [8]. The use of ROS aligns with the project’s goal
of creating a modular and scalable ASV that can operate even
with individual node failures. We are using rich ROS package
ecosystem and only develop the core functionality. Use of PX4
as autopilot on VCU enables use of PX4-Avoidance package
[17] that exposes autopilots low-level avoidance interface to
ROS

I. Telemetry and remote shutdown

We are using two to three bands: 433 MHz, 2.4 and 5 GHz,
fig. C-B. Standard PixHawk compatible frequency hopping
radios will be used on ISM 433 MHz band [19]. This eases
out legal requirements as we can use it both in the EU and
and the US. This will be our primary radio link for Mavlink
communication between OCS. We tried developing a novel
approach with custom radios with narrow band modulations or
LoRa technology, as it would decrease interference with other
teams. Unfortunately deadline shift decided against it. Remote
shutdown is also placed on the same band. As required, uses
its own radio with simpler modulation.

WiFi will be used for video feeds and as a secondary
Mavlink radio link for PixHawk VCU. For OCS we have pro-
cured Federal Communications Commission certified, highly
configurable router with a directional dual band antenna with
60 degrees FOV. It’s characteristic will cover one course area
without much of a problem. We will focus on 5 GHz band
as it has shorter range and is still underutilized. This should
allow us to share WiFi spectrum with other teams, as we can
fine tune our radio presence. 2.4 GHz band will be avoided as
its crowded and has much bigger range, it will be used only

3

as fallback. For ASV side simple 5 GHz WiFi dongle with
dipole antenna is satisfactory.

J. Ground Segment

OCS will be composed of another SBC, this time Raspberry
Pi 4. It will be connected to telemetry radio and local network
bridged to ASV over WiFi. On this SBC will be setup teleme-
try logging and proxy. Also to this SBC is connected GPS RTK
base station. This approach enables multiple operators with
different ground control software to connect to a single vessel.
Although QGroundControl already enables Mavlink proxy, a
more robust setup can be achieved on SBC.

For manual control gamepad connected to QGroundControl
should be sufficient.

III. TESTING STRATEGY

With a long procurement time for parts, we have started with
a simulated environment. We utilized the rich PX4 ecosystem
and readily available docker containers [21]. This allowed
more team members to actively develop and test Onboard
Processing (OBP), without need to be locked to dependencies
from year 2018. We want simulation to be a constant factor in
the project cycle. Because of that we have leveraged a modern
cloud solution: a local Kubernetes cluster, to create continuous
integration (CI). This Kubernetes instance is running the
same docker containers as our developers. This CI tests both
VCU movement controller and OBP behavioral trees coupled
with simulated view from stereo and color camera. One big
advantage of running a local cluster is the ability to run
containers on custom hardware, like our chosen SBC: Nvidia
Jetson. We can run vision processing on real hardware to check
processing power budget. Development of this CI has been
cut short by competition date shift and relative complexity of
Kubernetes setup.

Fig. 3. Gazebo Simulation Environment

For hardware testing, we tried to import techniques from the
CubeSat field. FlatSat [20] is an approach where subsystems
are laid out and connected to communication and power buses
on a test bench. This approach allows us to test every new
subsystem with the rest of the systems in an environment that
is very similar to its final deployment. Another benefit is that

with everything laid out, it is much easier to troubleshoot or
make adjustments rather than when everything is packed in
the hull.

ACKNOWLEDGMENT

SimLE SeaSentinel Team would like to thank:
Wiktor Sieklicki, PhD for being our factulty advisor and
mentor,
Jakub Zdroik, MSc for his help and advise regarding technical
aspects of our ASV,
Henryk Lasota, PhD and Piotr Cywiński, MSc for their guid-
ance during the early phases of our project,
Jerzy Demkowicz, PhD for patience with Norberts thesis,
Hackerspace Pomerania community for sharing components,
tools and their knowledge,
ICETEK sp. z o.o. for sharing knowledge about cloud com-
puting and giving access to kubernetes cluster
F.D.C. Willard for long and contributing discussions.

REFERENCES

[1] A Guide to the Business Analysis Body of Knowledge, International
Institute of Business Analysis, 2009, ISBN 978-0-9811292-1-1.

[2] L. Ren, H. Yin, W. Ge and Q. Meng, ”Environment Influences on Uncer-
tainty of Object Detection for Automated Driving Systems,” 2019 12th
International Congress on Image and Signal Processing, BioMedical
Engineering and Informatics (CISP-BMEI), Suzhou, China, 2019, pp.
1-5, doi: 10.1109/CISP-BMEI48845.2019.8965948.

[3] chilipeppr/robot-actuator-esp32-v8: This is the repo for the robot actu-
ator v8 based on an ESP32 as the brains of each robot arm actuator.
https://github.com/chilipeppr/robot-actuator-esp32-v8

[4] Inverse Kinematics – Modeling, Motion Planning,
and Control of Manipulators and Mobile Robots
https://opentextbooks.clemson.edu/wangrobotics/chapter/inverse-
kinematics/

[5] Open Source Autopilot for Drones - PX4 Autopilot, Retrived from
https://px4.io/

[6] ArduPilot - Versatile, Trusted, Open, Retrived from https://ardupilot.org/
[7] T200 Thruster: ROV thruster for marine robotics propulsion, Retrived

from https://bluerobotics.com/store/thrusters/t100-t200-thrusters/t200-
thruster-r2-rp/

[8] Ujazdowski T. and Kułaga D. Project and implementation control
algorithm based on fuzzy logic for the yacht model, 2021, Master’s
degree thesis, Gdańsk University of Technology, Poland

[9] BehaviorTree/BehaviorTree.CPP: Library in C++. Batteries included,
Retrieved from http://github.com/BehaviorTree/BehaviorTree.CPP

[10] ISO - ISO 11898-1:2015 - Road vehicles — Controller area network
(CAN), Retrieved from http://www.iso.org/standard/63648.html

[11] OpenCyphal Specification v1.0-beta – Open-
Cyphal Development Team, Retrieved from
http://opencyphal.org/specification/Cyphal Specification.pdf

[12] C.-Y. Wang, A. Bochowsky, M.L. Hong-Yuan ”YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors”
arXiv:2004.10934

[13] Redmon, Joseph (2016). ”You only look once: Unified, real-time object
detection”. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. arXiv:1506.02640

[14] RobotFlow dataset, Kriti Gupta, 2021, Retrieved from
http://universe.roboflow.com/kriti-gupta/setup

[15] OAK-D — DepthAI Hardware Documen-
tation 1.0.0 documentation, Retrieved from
http://docs.luxonis.com/projects/hardware/en/latest/pages/BW1098OAK.html

[16] Stanford Artificial Intelligence Laboratory et al. (2018). Robotic Oper-
ating System. Retrieved from https://www.ros.org

[17] PX4 avoidance ROS node for obstacle detection and avoidance. Retrived
from https://github.com/PX4/PX4-Avoidance

[18] MAVROS: MAVLink to ROS gateway with proxy for Ground Control
Station Retrived from https://github.com/mavlink/mavros

4

[19] SiK Radio — PX4 User Guide Retrived from:
https://docs.px4.io/main/en/telemetry/sik radio.html

[20] Reilly, Jack & Murphy, David & Doyle, Maeve & Walsh, Sarah &
Akarapu, Sai Krishna Reddy & de Faoite, Daithı́ & Dunwoody, Rachel
& Erkal, Jessica & Finneran, Gabriel & Mangan, Joseph & Marshall,
Fergal & Salmon, Lána & Somers, Eoghan & Thompson, Joseph &
Ulyanov, Alexey & Hanlon, Lorraine & McKeown, David & O’Connor,
William & Wall, Ronan & McBreen, Sheila. (2022). EIRFLAT-1: A
FlatSat platform for the development and testing of the 2U CubeSat
EIRSAT-1. 10.5821/conference-9788419184405.113.

[21] Docker overview https://docs.docker.com/get-started/overview/
[22] Development containers https://containers.dev/

5

Appendix A – Component List

Component Vendor Model Specs
Custom/

Purchased Cost
Year of

Purchase
ASV Hull SRAD Flat bottom hull B=60cm, L=120cm, H=40cm Custom 250$ 2023

Waterproof
connectors Bulgin PXP7010/02P/ST/1113

https://www.bulgin.
com/products/pub/media/import/attachments/700

0_power.pdf Purchased $24 2022

Propulsion Blue robotics T200
https://bluerobotics.com/store/thrusters/t100-

t200-thrusters/t200-thruster-r2-rp/ Purchased $236 2022

Power system Redox
Li-Po 4400mAh 30C 4s

14,8V

https://botland.com.pl/akumulatory-li-pol-4s-
148v/8475-pakiet-li-pol-redox-4400mah-30c-4s-

148v-5903754001277.html Purchased $58 2022

Motor controls Blue robotics Basic ESC
https://bluerobotics.com/store/thrusters/speed-

controllers/besc30-r3/ Purchased $36 2022
Processing
computer Nvidia Jetson Nano B01

https://developer.nvidia.com/embedded/jetson-
modules Purchased $340 2023

Teleoperation Holybro SiK V3
http://www.holybro.com/product/transceiver-

telemetry-radio-v3/ Purchased $180 2023
Cameras Luxonis OAK-D https://store.opencv.ai/products/oak-d Purchased $249 2022
Vehicle

control unit Holybro Pix32 v6 https://shop.holybro.com/pix32-v6_p1338.html? Purchased $340 2022
GPS SparkFun GPS-RTK2 https://www.sparkfun.com/products/15136 Purchased $275 2023

Vision Yolo v7 https://github.com/WongKinYiu/yolov7 - - -
Autonomy Open robotics ROS https://www.ros.org/

Open source
software 107-Systems 107-Arduino-MCP2515

https://github.com/107-systems/107-Arduino-
MCP2515 - - -

Open source
software 107-Systems 107-Arduino-Cyphal

https://github.com/107-systems/107-Arduino-
Cyphal - - -

Open source
software

UAVCAN
Consortium Open cyphal https://opencyphal.org/

Open source
software Dronecode Px4 autopilot https://px4.io/

APPENDIX B
TEST PLAN & RESULTS

intentionally left blank

7

APPENDIX C
SYSTEM DETAILS

A. Product Tree

B. Telemetry System Overview

8

C. Electrical System Overview

9

